BILS — Bioinformatics Infrastructure for Life Sciences

Introduction to Bash
programming/scripting

Jacques Dainat
2015

BILS — Bioinformatics Infrastructure for Life Sciences

Summary

1) Shell ? What is that ? { < - EX

2) Bash? What is that ?

3) Bash tricks

4) 1/0 and Redirection

5) Scripting in bash

6) Examples

! Commands are in green (most of time)

BILS — Bioinformatics Infrastructure for Life Sciences

Shell ? What is that ?

Shell = command-line interpreter (CLI) providing user interface ~1960

Windows : command prompt (command.com) until WinXP
cmd (cmd.exe) Windows NT command interpreter

Unix : Bourne Shell (sh) — written by Stephen Bourne (released 1977)
sh <-> standard

Shell available chronologically : sh (1977), csh (1978), tcsh (1981), ksh (1983), bash (1989),
zsh (1990).

BASH = Bourne-again shell (GNU project - Free)
large offspring - unix family (e.g BSD, Linux, OS X, etc.)

- Mac: OS X < 10.3 tcsh
0S X >=10.3 bash

CLI occurred at the same time as the keyboard.

Windows and Unix are operating systems

Command prompt is often called MS-DOS or / DOS that is in reality the Operating
system name.

The Bourne shell was one of the major shells used in early versions of the Unix
operating system and became a de facto standard.

BILS — Bioinformatics Infrastructure for Life Sciences

Shell ? What is that ?

List all the available shells :
cat /etc/shells
/bin/bash
/bin/sh
/bin/tcsh
/bin/csh

Check your default shell:
echo $SHELL

To switch from one shell to another, just enter the name of the new shell in the active
terminal.

To know the current shell working, type: echo $0
Which Bash version ? /bin/bash -version

- OS X Yosemite (Bash 3.2)
- Bash 4 exists since 2009

associative arrays available since bash 4

BILS — Bioinformatics Infrastructure for Life Sciences

Bash? What is that ?

Why BASH ?

- By default on most used Unix machines (Ubuntu, OS X)

- It can run almost all Bourne scripts and POSIX compliant scripts

- Syntax simplified :
Single [] are posix shell compliant condition tests.
Double [[]] are an extension to the standard [] and are supported by bash
and other shells (e.g. zsh, ksh).
They support extra operations (as well as the standard posix operations).
For example: || , && and regex matching with =~ (Perl syntax).

- Associative arrays (since version 4)

- Free (GNU project)

POSIX: Portable Operating System Interface, standard specify for compatibility with
variants operating systems

BILS — Bioinformatics Infrastructure for Life Sciences

Bash tricks

The commands:
- Despite they are often intuitive you have to learn them.

- You may look the /bin and /usr/bin directories that contain all the commands.
Il /bin
Il /usr/bin

- Internet is your friend (e.g.):
- 0S X command line : http://ss64.com/osx/
- Linux command line : http://ss64.com/bash/

- Have a “lazy dog”

1 Use man, help or info to see documentation of each command
man command

/bin essentially contains command require by the system for emergency repairs,
booting

/usr/bin contains the rest
man, help or info In that corresponding prioritization

BILS — Bioinformatics Infrastructure for Life Sciences

Bash tricks

General:

Environment variables hold values related to the current environment.
env

- PATH: It specifies the directories in which executable programs are located

~/.bashrc or ~/.profile (file read when open a new shell)

- typically used to change prompts, set environment variables, and define shell
procedures.

e.g: * modified the PS1 variable to customize the prompt
http://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html

* add alias: alias lI="ls -IGrt’
alias milou='ssh user@milou.uppmax.uu.se’
* Modify or add environment variables

source ~/.profile #take in account the modification in current shell

-IGrt: | for long format ; G for enable colorized output ;t to sort by time modified
(most recently first); r for Reverse order - the oldest entries first (newest last =
bottom)

BILS — Bioinformatics Infrastructure for Life Sciences

Bash tricks

General:
- Use the tabulation key for auto-completion !

- egrep, fgrep and rgrep are often available but their direct invocation is
deprecated (Is provided to allow historical applications that rely on them to run
unmodified). Instead use grep —E, grep —F and grep -r.

- Need of calculation, type bc

- Pattern matching != Globbing
Both use Wildcards but the first is for text matching while the second for file names.
/\ Same Wildcard doesn’t have the same meaning.
e.g:*
Pattern matching follows the Perl syntax.

Wildcards are also called metacharacters.
* The preceding item matches 0 or more times.
* Zero or more characters

BILS — Bioinformatics Infrastructure for Life Sciences

Bash tricks

Command substitution: * command®
$(command)

Bash replaces the command substitution with the standard output of the command.

The output of the command can be used in another command:
echo The current working directory is: "pwd’

or to set a variable:
var=$(pwd)

BILS — Bioinformatics Infrastructure for Life Sciences

1/0 and Redirection

Input

from command line argument:

- file: - string: - nothing:

cat file_Input echo “Hello world” Is ! Often commands accept

supplementary option(s)

from a stream (STDIN):

- file: -output of another command: :
cat < file_Input .awk {if($1=="value") print $0}' file ((|) wc-I
Command 1 " Command 2

-
Command chaining tool.
Piping the STDOUT of a command into the STDIN of another.

/!\\ commands that take an input either from a file or from STDIN: grep, sed, cat, head, sort, wc, etc.
/!\ commands that never read STDIN : Is, cp, mv, date, who, pwd, echo, cd, etc.
/\ commands that read only STDIN: tr

standard streams are preconnected input and output communication channels

10

BILS — Bioinformatics Infrastructure for Life Sciences

1/0 and Redirection

Output
By default 3 files are opened with their descriptor, stdin (0), stdout (1), and stderr (2).
(descriptors 3 to 9 stay available)

STDOUT redirection to a file:
command file_Input 1> file_Ouput
command file_Input > file_Ouput /'\ overwrites the file_Ouput if exists

>> Appends the file file_Ouput
2> or 2>> to redirect STDERR
&> or &>> to redirect STDOUT and STDERR
2>&1 Redirects STDERR to STDOUT

STDOUT of a command into the STDIN of another:
Piping |: .awk '{if($1=="value") print $0} file (|) ,
Command 1 T Command 2

wc-l

Redirecting by cross-connecting streams.

Open a new descriptor: exec 3<file for reading (example with read: while read —u 3
line;do echo Sline;done) - close it: exec 3<&-
: exec 3>file for writing - close it: exec 3>&-

Redirection tutorial: http://wiki.bash-hackers.org/howto/redirection_tutorial

BILS — Bioinformatics Infrastructure for Life Sciences

1/0 and Redirection

Piping is powerful, but inappropriate if you need several command STDOUTs to feed
the input of another command.

Process substitution: <(command)
Useful when a command needs a list of file as input.
It generates a file.

diff <(Is Sdir1) <(Is $dir2)

To check where the created temporary file is you can try: echo <(command)

12

BILS — Bioinformatics Infrastructure for Life Sciences

1/0 and Redirection

Resume 10:

variable

ﬂ error

variable

Example of process substitution in output: tar cfv >(bzip2 -c > dirl.tar.bz2) Sdirl

13

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

Lot of things can be done by command line:

command1 inputl outputFilel ; output2=5(command2 ouputFilel) ; command3 Soutput2

Command 1 Command 2 Command 3

command1l inputl outputFilel ; command2 ouputFilel | command3

Command 1 Command 2 Command 3

When command2 doesn’t handle file:

commandl inputl outputFilel; output2=$(|cat ouputFilel]Icommandz); command3 Soutput2

Command 1 Command 2 \ Command 3
Sub-command
commandl inputl OUtPUtFi|91;|cat ouputFilel ||command2 | command3
Command 1 Command 2 Command 3

Same thing if command3 cannot Handle a STRING (as with cut) we should write: ;
echo Soutput2 | cut -d” —f1
Commands can contain control structures as Loop or if condition.

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

In command line or in a script you can use these syntaxes:

commandl; command2 Several commands in a line

or
command1
One command by line
command2
Several commands in a line with STDOUT redirection
or

:|> One command by line with STDOUT redirection

15

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

When used bash ?
/\ Not adapted when:
- Resource-intensive tasks
- Complex application
- Need of specific library or data structure
- Cross-platform portability required

=> Great for small programs
=> More scripting rather than programming

Nice because:

- directly available via the terminal

- Easy to make script when you know command line. (automate routine)
- File handling

- System and Administrative

- Job Control

use C or Java for cross platform portability

16

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

Script or command line ?
Command line:
+short task
+ specific task (Throw-away code)
- if long command => hard to debug ; hard to read
- variable may be mixed up with those setup previously
- no user interface (check of arguments, help, etc)

Script:
+ long tasks
+ re-usable
+ code structured => easy to read (comment, block of code, function)
+ more user friendly (Warning, check of parameters)
+ debug easier
- big collection of scripts may be annoying (lost time to find the good one)

17

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

How write a script ?
1) Open a file to write your script with .sh extension:

#!/bin/bash <- It’s needed at the top of the file to specify the shell interpreter
echo “This is my first script” #display the sentence ~ <- One command (No semicolon needed)
save the command in a variable, then print it <- A comment

»”

var=$(pwd); echo “my working directory is Svar <- One command (No semicolon needed)

2) Save the file and give the execution right.
chmod 754 myscript.sh

3) Execute your script:

./script.sh

18

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

2,5 primary data structures

Simple variables:
A variable in bash can contain a number, a character, a string of characters.

You have no need to declare a variable, just assigning a value to its reference will
create it.

variable="a string with space"” or variable=54 or variable=$(command)

Array:

array=() or array=(AnnaParUlla) or declare-aarray

/"\ The array is not initialized to empty in the last case if it already exists.
» Array index is an integer starting from 0.

Associative array (only with Bash>4):

declare-A array or array =([string1]=valuel [string2]=value2)

/\ problem if you try to do: variable=54 toto <= bash try to execute

«toto»

-bash: toto: command not found

19

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

Array manipulation commands:

array[N]=value Set the element N of the array array to value

array+=(valuel value2 value3) Append the array with three values.

echo ${array[N]} Display the element referenced by the index N from array.

echo ${#array[N]} Display the length of the value referenced by the index N in array
echo ${#tarray[@]} Display (number of elements) of array.

echo ${!array[@]} Display each array index key as a separate argument.

echo ${array[@]} Display all the values stored in array.

unset -v array[N] Destroy the array element at index N.

unset -v array Destroy the complete array.

This slide is really boring... | know

20

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

Calculation in bash

((var = operation)) or var=$((operation))
Assign the result of an arithmetic evaluation to the variable var.

/ '\ Natively Bash can only handle integer arithmetic.

Floating-point arithmetic:

You must delegate such kind of calcul to specific command line tool as bc.

echo "operation" | bc |

Display the result of a floating-point arithmetic.

var=$(echo "operation " | bc -l)

Assign the floating-point arithmetic result to the variable var.

21

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

Bash Control Structures 1) Conditional statements (on arithmetic values):
If ((condition1));then / '\ The spaces are important in that syntax
command1
! ([condition2
command2

condition3)] && ([condition4

command3
condition5)) || ([condition4
command4
command5
fi Logical operators are in green.

22

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

Bash Control Structures 1) Conditional statements (on string values):
if [[condition1]];then / '\ The spaces are important in that syntax
command1
|| condition2
command2

condition3 || && || condition4

command3
condition5 || || || condition4
command4
command5
fi Logical operators are in green.

23

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

Bash Control Structures 1) Conditional statements (next):

variable=$(command)
case Svariable in
patternl)
commands1
pattern2|pattern3|patternd)
commands2
patternN)
commands3
»
*)
commands4

esac

Number of case infinite. It is a good
alternative to if when lot of case to
check.

24

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

Bash Control Structures 2) The loops:

A) The for loop:

Loop over list of elements (files or values):

foriin ; do foriin ; do
echo ”this is one file Si” command
done done

Loop over file’s lines:
foriin ; do
echo "this is one line: Si”
done

Loop over array:

foriin ;do

echo "key :" $i

echo "value:" ${array[$i]}
done

25

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

Bash Control Structures 2) The loops:

B) The while loop:

Loop over file’s lines:
while read line ;do
echo "this is one line: Sline”
done <

Loop over array:
i=0
while ((i<));do
echo "key :" $i
echo "value:" ${array[$i]}
((++)

done

=> |t exists the useless until loop. Become a while loop by simply negating the condition.

26

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

ps ax

jobs
Fg

bg
Kill
times
Wait

Processes control :

process status with a = show processes for all users
x = show processes not attached to a terminal
List the active jobs
Switch a job running in the background into the foreground.
Restart a suspended job, and run it in the background
Terminate a process
System times for processes run from the shell
Wait for the specified process and report its termination status....

27

BILS — Bioinformatics Infrastructure for Life Sciences

Programming in Bash

What about library ?

Bash is quite limited but you can define a list of methods in a file. To include all the
methods of this file in a script you have to write at the top of your script one of these
lines (after the #!/bin/bash):

. /path/to/the/file
Sinclude /path/to/the/file

source /path/to/the/file

28

BILS — Bioinformatics Infrastructure for Life Sciences

More ?

AWK: http://www.grymoire.com/Unix/Awk.html

SED: http://www.grymoire.com/Unix/Sed.html

BASH: http://www.gnu.org/software/bash/manual/bashref.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://www.tldp.org/LDP/abs/html/ (Advanced Bash-Scripting Guide)

For other Unix Shell commands or to compare them:
http://hyperpolyglot.org/unix-shells

Mac OS X version 10.9 Bash manual page:

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/
man1/bash.1.html

A book ? => bash Cookbook (O'Reilly)

29

BILS — Bioinformatics Infrastructure for Life Sciences

Examples

1) Reverse complementing

2) Get last two columns of a file

3) Remove isoform from proteome

4) Awk and join commands

5) Example of job control

6) downsampling a fastq

30

BILS — Bioinformatics Infrastructure for Life Sciences

Correction:
Reverse complementing

echo sequence | rev | tr “ACGT” “TGCA”

Or

cat file | rev | tr “ACGT” “TGCA”

31

BILS — Bioinformatics Infrastructure for Life Sciences

Correction:
Get last two columns of a file

awk ‘{print SNF“\t”$(NF-1)}’ file

Or

rev file | cut—1,2 | rev

32

BILS — Bioinformatics Infrastructure for Life Sciences

Correction:
Remove isoform from proteome

Remove isoforms:
#!/bin/bash

#This script kept only one isoform per gene for proteomes coming from Ensembl

Arguments and Paths

if (S#!=2)); then
echo -e "The script allows to filter proteome in fasta format from Ensembl with aims to keep the
longest isoform per gene !"
echo -e "The script needs 2 parameters: \n(1)The proteome input fasta file"
echo -e "(2)The cleaned proteome output in fasta format"
exit
fi

Program heart:

cat $1 | awk '/~>/ {if(N>0) printf("\n"); printf("%s\t",$1"\t"$4);N++;next; {printf($0);} END {if(N>0)

printf("\n");}' | awk -F '\t' '{printf("%s\t%d\n",$0,length($3));}' | sort -t' '-k2,2 -k4,4nr | sort-t'
'-k2,2 -u-s | cut-f1,2,3 | awk '{print $1"\t"$2"\n"$3}' | fold -w 60 > $2

33

BILS — Bioinformatics Infrastructure for Life Sciences

Correction:
Remove isoform from proteome

Explanation of the script “remove isoforms”:

1) cat $1| awk '/A>/ {if(N>0) printf("\n"); printf("%s\t",$1"\t"$4);N++;next;}
{printf($0);} END {if(N>0) printf("\n");}' |\ #linearize fasta and print coll col4 and
seq linearized

2) awk -F'\t' {printf("%s\t%d\n",50,length($3));}' |\ #extract length on the 3th

column

3) sort-t' '-k2,2-k4,4nr |\#sort on column2, inverse length

4) sort-t' '-k2,2-u-s |\# #sort on column 2, unique, stable sort (keep previous
order)

5) cut-f1,2,3 |\ #cut3column
6) awk '{print $1"\t"$2"\n"$3}' |\ # print coll col2 col3 separated by tabulation
7) fold -w 60 #pretty fasta = 60 letters per line

! Can also be written on command by line with pipe at the end of each line.

awk '/A>/ ... <= every time there is the superior character
printf("%s",50); => %s non useful

BILS — Bioinformatics Infrastructure for Life Sciences

Awk and join command

Exercise from Matthew Webster Perl course:

http://blog.websterlab.eu/courses/perl/exercises/hashes and regular_expressions/

Exercice 3

http://blog.websterlab.eu/courses/perl/exercises/8-control-structures/

Exercise 2 from question 5

35

BILS — Bioinformatics Infrastructure for Life Sciences

Process control example:

Launch training test
nbjobl=0
for ((i=Smini; i<=Smaxi ; i=i+Sinterval)); do
bsub -J trTeSi "augustus --gff3=on --species=S$speciesSi StestFileSnbGeneRef | tee
StraingFileS${i}Test.out > started.trteSi"
((nbjobl=nbjobl+1))
done
echo "nb launched jobs = $nbjobl"

sleep 5

nbjobs=1

while [$nbjobs =0]; do
nbjobs=$(bjobs | grep -c "trTe")
echo "nb training test jobs running= $nbjobs"
sleep 30

done

In the for loop it’s possible to launch a determined number of job. And check the
number of job running each Xsecondes. If number job running inferior to nuber job
authorized, launch a new job.

BILS — Bioinformatics Infrastructure for Life Sciences

6) Downsampling a fastq

How get a random sample of a dataset ?
Correction:

paste f1.fastq f2.fastq |\ #merge the two fastqgs

awk '{ printf("%s",$0); n++; if(n%4==0) { printf("\n");} else { printf("\t\t");} }' |\ #merge
by group of 4 lines

shuf |\ #shuffle

head |\ #only 10 records

sed 's/\t\t/\n/g' |\ #restore the delimiters

awk '{print $1 > "file1.fastq"; print $2 > "file2.fatsq"}' #split in two files.

37

