BASH cheat sheet - Level 2

\

Escape character. It preserves the literal value of
the next character that follows, with the
exception of newline.

* command’ The backtick () is a command substitution.
echo The current working directory is: ‘pwd’
>The current working directory is: /home/user/path

The text between a pair of backtick is executed by the
shell before the main command and is then replaced
by the output of that execution. The syntax
$(command) is generally preferable.

It introduces parameter expansion, command
substitution, or arithmetic expansion. The
parameter name or symbol to be expanded may
be enclosed in braces.

Using variables

variable=value
Assign a value value to the variable variable. The
variable scope is restricted to the shell.
local variable=value
Assign a value value to the local variable variable.
It doesn’t come out a curly bracket area.
export variable=value
Make the variable name available to the shell
and sub-processes.
variable=$(command)
Assign the output of command to variable.
${#variable}
Length of the value contained by the variable.
${variable:N}
Keep the character of the value contained by
variable after the Nth,

${variable:N:length}
Substring the value contained by variable from
thr Nth character to up to length specidied.
${variable/pattern/string}
The longest match of pattern against the variable
value is replaced with string.

echo My home is: SHOME
>My home is: /home/user

Write arguments to the
standard output.

echo -e Enable interpretation of backslash-
escaped characters.

printf Format and print the arguments.

printf %q "$IFS" Print the arguments shell-quoted.

>"\t\n'

printf "%.1f" 2.558 Specify the decimal precision.

>2.6

printf IIO/OS\tO/OS\n" "1" "2" "3" "4"
>1 2
3 4

%s interprets the
associated argument
literally as string.

Using quotes

Weak quoting - double quote (") :

string="My home is: $SHOME"

echo $string

>My home is: /home/user
Use when you want to enclose variables or
use shell expansion inside a string.

Strong quoting - single quote (') :

echo 'My HOME is: $HOME'

>My HOME is: SHOME
Preserves the literal value of each character
within the quotes.

man command : display the command’s manual page
Jacques Dainat - 2015

Print commands .

Wildcards operators

Regular expressions : Used to match text.

A Matches the beginning of the line.

$ Matches the end of the line.

~$ Matches blank lines.
Any character.

I Any of the character inside the brackets.

[*a-f] Matches any character except those in the range
atof.

\a A letter (similar to [a-zA-Z]).

\t A tabulation.

\n A new line.

\w An alphanumeric ([a-zA-Z0-9_])

\W Non alphanumeric (The opposite of \w)

? The preceding item matches 0 or 1 time.

* The preceding item matches 0 or more times.

+ The preceding item matches 1 or more times.

{N} The preceding item matches exactly N times.

{N,} The preceding item matches N times or more.

{N,M} The preceding item matches at least N times and
not more than M times.

[:class:] POSIX Character Classes ([:alnum:], [:alpha:],

[:blank:], [:digit:], etc, respectively equivalent to
A-Za-z0-9, A-Za-z, space or a tab, 0-9, etc).

Globbing (Pathname expansion) :
Used to match filename(s).

? Any single character

Zero or more characters

I Specify a range. Any character of the range or
none of them by using ! inside the bracket.
{term1,term2} Specify a list of terms separated by

commas and each term must be a name or a
wildcard.

{term1.term2} Called brace expansion, this syntax
expands all the terms between term1 and term2
(Letters or Integers).

With the extglob shell option enabled (check it with shopt) :
In the following description, a pattern-list is a list of one
or more patterns separated by a |.

Matches zero or one occurrence of the
given patterns.

Matches zero or more occurrences of the
given patterns.

Matches one or more occurrences of the
given patterns.

Matches one of the given patterns.

?(pattern-list)
*(pattern-list)
+(pattern-list)
@(pattern-list)
!(pattern-list)

Matches anything except one of the
given patterns.

/!\ Regular expressions and globbing wildcards should
not be mixed up. They have different meaning.

File modification commands

tr string1 string2 < file
Replace string1 characters occurrences within file by
string2 characters (where the first character in
string1 is translated into the first character in string2
and so on).

sed is a non-interactive text file editor :

sed 's/patternl/pattern2/g’ ficOrigine
Replace patternl occurrence within file by pattern2.
The s means «substitute » and the g means «global
replacment » (Not only the first occurence).
-e : allows combining multiple commands (use a -e before
each command).
-i: Edit files in-place. (Be carefull using that option)

sed -n 5,10p file
Print lines 5 to 10.

The awk command

awKk is a field-oriented pattern processing language.

awk 'BEGIN { Initial command(s) }

{ by line command(s) }

END { final command(s) }' file

$0 is an entire line.
$1 is the first field, $2 the second, etc.

By default, fields are separated by white space. Use
the -F option to define the input field separator (can
be a regular expression).

NF Number of fields in the current record.
NR Ordinal number of the current record.
FNR Ordinal number of the current record in

the current file.

-v name=$var It allows to pass the shell
variable $var to awk command. The variable
is known as name within the awk command.

awk '{ if ($2 ~ pattern) arr[$0]++} END { for (i in
arr){print $i}}' file

For each line where the second field match
the pattern, save the line as key in the associative
array arr and increment its value. At the end print
each key of the associative array. This will remove the
duplicate lines that have matched.

awk 'FNR==NR{arr[$4]++;next}{ if($4 in arr)print
$0 Y filel file2
Print all lines of fileZ where the fourth field
matches one of the third field of filel.

String commands together

command < file
Redirect file into a command. File is read as
standard input instead of the terminal command.

command1 | command2
Connect the standard output of the left command
to the standard input of the right command.

command1 ; command2
Separate two commands. Permit putting
several commands on the same line.

man command : display the command’s manual page
Jacques Dainat - 2015

Math calculation

Plus

Plus-equal (increment variable by a constant)
Minus.

Minus-equal (decrement variable by a
constant).

Multiplication.

Times-equal (multiply variable by a
constant).

Division.

Slash-equal (divide variable by a constant).
Modulo (returns the remainder of an integer
division operation).

Modulo-equal (remainder of dividing variable
by a constant).

Exponentiation.

Increment a variable by 1.

Decrement a variable by 1.

((var = operation)) or var=$((operation))
Assign the result of an arithmetic evaluation
to the variable var.

/ !\ Natively Bash can only handle
arithmetic.

integer

Floating-point arithmetic
You must delegate such kind of calcul to specific
command line tool as be.

echo "operation" | be -1
Display the result of a floating-point
arithmetic.

var=$(echo "operation " | bc -1)
Assign the floating-point arithmetic result
to the variable var.

